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1. INTRODUCTION

1.1. Moderately Sized Multiprocessors

l

In the past few years, several computing systems have been developed which use traditional
Von-Neuman processors executing in parallel. These processors communicate at speeds which
are only slightly slower than accesses to local memory. Communication is accomplished using
message passing and/or shared memory techniques. These computers are described as MIMD
(Multiple Instruction Multiple Data) machines. We use the term Moderately Sized
Multiprocessor to describe MIMD systems which contain a moderate number g_sevcral dozen)
processors. Examples of such systems include the Cal Tech Cosmic- Cube {17), the NYU
UltraComputcr [7], the IBM RP3 {15], and the BBN Butterfly Computer.[3]. ™ 3

1.2. Compiling On/For a Multiprocessor

Two interesting problems in compiling come to our attention. The first (and admittedly the more
important) problem involves building compilers to assist the programmer in building
applications that will take advantage of the parallelism offered by the multiprocessor. This
problem we designate as Compiling For a Multiprocessor. The other problem is how to build a
compiler which executes simultaneously on several nodes of a multiprocessor even though the
output of the compiler may be destined for a uniprocessor or a single node of a multiprocessor.
This problem is designated as Using a Multiprocessor for Compiling. In this paper we address
some of the issues involved with the second problem: using a multiprocessor to perform
traditional compiling activities. We sketch the overall design of a Compiler using a Moderately
Sized Multiprocessor. Our emphasis is on the scanning (lexical analysis) stage of compiling. We
have built a prototype of a scanner for the programming language Modula 2 [21] which executes
on a BBN Butterfly Computer [3]. Results using that prototype are discussed.

1.3. Overview of Traditional Compiler Architectures

Compilers are traditionally organized as a set of modules performing different portions of the
compiling activity [1, 22]. One decomposition of a compiler might include; a preprocessor .
performing file inclusion and macro expansion; a scanner (lexical analysis) module to break an -
input stream of characters into tokens (lexemes); a parser (syntactic analysis module) that parses 0O
a token stream according to some grammar and whose output is a symbol table and a set of i

tuples or some other intermediate representation of the program; a data flow analysis module to - —
derive relationships between expression computations and uses; an opfimizer to remove
redundant operations; a code generator producing an assembly or object module; and perhaps an /
assembly phase to generate the final object module. These modules may communicate in several
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different ways. The modules may run sequentially in passes (with the results of each pass being
an intermediate data structure or data file); as pipelines where data produced by one module is
passed to the next as it is produced; or as coroutines executing in a pseudo-parallel manner.

Note that this traditional compiler architecture has been challenged in recent years by the use of
programming environments containing editors which manipulate data structures representing the
parse tree of the program instead of a character string representation of the program (e.g
INTERLISP [19], and the Comell Program Synthesizer [18]). In these architectures, the
compiler does not perform the scanning or parsing phases as these have essentially been
completed by the editor. Our work here does not consider such programming environments.

1.4. Gross Parallelism

One of the easiest ways of using a multiprocessor to get leverage on the compiling problem is to
assume that we have a large number of different source files to compile. We then run a
traditional compiler on each node of the multiprocessor. Thus, if we had one hundred processing
nodes we would have one hundred compilers running in parallel. This is exemplified in the
parallel versions of the Unix(tm) make facility [4]. This would (assuming sufficient I/O
bandwidth) give us a near linear speed-up in compilation time for the set of programs to be
compiled. However, in the course of application program development, it is rare to have that
many files to compile at once. Subsystems that must be recompiled together consist of relatively
few source files. For example, the Chrysalis Operating System [2] for the BBN Butterfly
Computer currently is made up of only a few dozen files. In its extreme, the gross parallelism
technique would encourage us to construct source files containing single procedures, to allow us
to maximize the parallelism in the compilation. This changes the problem from parallel
compiling to parallel linking. The number of source files that a programmer has to keep track of
would also increase dramatically. The gross parallelism approach would not give us much
leverage in the edit-compile-debug loop as we would typically have only one or two source files
modified at a time. Thus, we would probably only use a very small number of the available
processors when we did compile. However, if we were recompiling all of a very large system
(say on operating system and all the dependent utilities) this might be the best approach to
follow. .

1.5. Pipelining

We may use a few processors by dedicating each to a particular phase of the compilation. The
stream of output from each processor becomes the input to the next processor in the pipeline.
One processor might be assigned to the macro-expansion; another the scanner; another the
parser; and so forth. Some processors are idle at the beginning of a compilation while the
pipeline is being filled, but during most of the compilation, useful work is done by all. Care must
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be taken so that comparable amounts of computation would be done by all processors to avoid
excessive idle times among individual processors waiting for input from a previous processor in
the pipeline. With the straightforward implementation of this technique, it is hard to imagine
how more than ten or so processors could be used. This technique could be combined with the
Gross Parallelism technique mentioned above to increase the number of processors usad.

1.6. Paraliel Implementations of the Passes

Our current research involves investigation of each of the phases of the compiler and
development of parallel algorithms to simultaneously use several processors for each phase. Our
current model assumes that each phase of the compilation run to completion before the next is
started . This unfortunately eliminates pipelining or coroutining of the stages. We expect it will
be possible to relax this restriction in the future.

1.7. Evaluation of a Parallel Implementation

An evaluation of a parallel implementation may involve many quantities: memory use;
execution time; and so forth. Our evaluation is in terms of execution time. For ease of
comparison let us assume that we are comparing a multiprocessor and uniprocessors with
sufficient memory and memory addressibility so that issues of addressibility do not cloud a
comparison of execution times. We do not want to consider problems that "fit" in main memory
on a multiprocessor but must be "swapped” in and out on a uniprocessor because of limited
addressibility or real memory directly available to a single processor.

What should be the execution time of a multiprocessor implementation be relative to that of a
uni-processor implementation? Let us define a few terms so that we may discuss execution
times.
For a given problem let:
Time(n, m) be the time needed to process the first m items of data.using n processors.
In other words the time needed by n processors to handle a problem of size m. Clearly
this is data file dependent, but let us consider this time for a particular data set.
Our goal is to get a speedup of n times using » processors.
Time(n,m) = Time(1,m) /n

In general this is not possible, for several reasons.

First of all there is a non-zero overhead in starting and finishing up that is independent of




Lexical Analysis on a MuitiProcessor 4

problem size. In other words
Time(1,0) >0

There is also a difference in the execution time needed for processing portions of the input file.
For example, in scanning, a processor which receives one long comment as its input will finish
significantly sooner than a processor which receives normal statements. In scanning, we have
seen factors of 3 differences in execution time to process different program segments that are
approximately the same length. This problem we call the problem of non-uniform partitioning,
as the amount of computation is non-uniform across the partitions.

Finally, there is the problem of contention. There may be some critical resource either in the
hardware or in the data structures of the program that prevents all processors executing
concurrently. An example of such a hardware resource is the memory switch of the Butterfly
Computer. Most data structures that maintain consistency by allowing multiple readers or a
single writer will be potential contention points.

2. RELATED WORK

Related work includes the pipelined compiler of Miller and Leblanc [11]. They were limited in
the amount of parallelism by the length of their pipeline. Their pipeline consisted of a scanning
stage, a parsing stage and a semantics stage.

Vandervoorde’s compiler for C [20] basically ignored parallel scanning and concentrated on
parallel instantiations of a recursive descent parser, with a new parser thread being forked when
a new code (as opposed to declaration) section is encountered. He describes techniques to keep
the number of threads comparable to the number of available processors to avoid the overhead of
thread context switching. His work was on a small multiprocessor (5 processors) and he was able
to get a speed up of over 3 compared with a uniprocessor implementation.

Mikunas and Schell [13] describe a design for a parallel parser in which ambiguities by one
processor are disambiguated using communication with the processor to the left. Apparently no
implementation was completed.

In summary, most earlier work seems to have concentrated on utilization of a relatively small
number of processors (less than 10). Simple pipelining techniques or techniques involving
potential communications with a small number of other processors have been previously
demonstrated.

]
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3. PARALLEL IMPLEMENTATIONS OF THE PASSES

Our model of a parallel compiler is to parallelize each stage of compilation, running each stage
to completion before starting the next stage. In this section we present the overall design of a
parallel compiler.

3.1. Scanning

We partition the source file into arbitrary source-pieces (say every few hundred bytes) and hand
off each source-piece to a different processor and then concatenate the resulting token streams.
The main problem with this technique is that apriori we have no way of insuring that the
partitioning points are between tokens. If we picked totally arbitrary partitioning points we
could be in the middle of a reserved word, identifier, multicharacter operator, comment or
character literal. Solutions to this problem will be discussed below.

The output of the scanner consists of several data structures: the table of the tokens found; a
string table containing all character literals and names of identifiers; some description about the
comments terminated in this source-piece (but not started) in this piece; a description of the
comments started but not terminated; and some indication of the bracketing constructs (e. g.
PROCEDURE tokens and their corresponding END tokens) which would be useful to the next
stage to partition the token stream into suitable groups for parceling out to parallel instantiations
of a parser.

3.2. Parsing

Using the bracketing information (for example PROCEDURE and corresponding END) to
identify complete syntactic units, we partition the token stream into groups. Each of the groups
of tokens derived above is sent to a different instantiation of the Parsing module. There may be
different types of Parsers depending on the known syntactic unit. E. g. one type of parser for
Module bodies, one type for procedures etc. The output of each parser instantiation is the
intermediate code form (e. g. parse tree or tuples) and a symbol table segment. We have no
guarantee that the parsing of a Module body or Procedure will be completed before Procedures
nested inside the Module body. Thus, we cannot resolve symbol references during this stage.
The intermediate code will thus have references to the string table for all identifier usages.

3.3. Symbol Table Construction

We merge the symbol table segments produced above and build a data structure reflecting the
scoping rules. In Modula-2 we would also have to merge in the symbol table segments produced
by previous compilations of DEFINITIONS modules at this time.
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3.4. Name Resolution

Because of the possible nesting and hiding of declarations it is not possible in general for parallel
parsers to determine the binding between identifier usages and declarations until after the
Symbol Table has been constructed (above).

Therefore we need a phase which processes the intermediate code (may coincide with the code
generation phase) to map the identifiers into the appropriate symbol table entries.

3.5. Other Phases

The optimization, code generation and assembly phase (if any) could be done in parallel as well
(say on a procedure basis)

4. OUR PROTOTYPE

The remainder of this paper concerns the Scanning Phase and the prototype implementation we
have constructed for the BBN Butterfly Computer. The prototype was written in Modula-2 [14].
Experiments were conducted using the source of the Scanner as input to the scanner.

4.1. The Butterfly Computer

The BBN Butterfly Computer used for these experiments is a first generation moderately sized
multiprocessor [3]. The machine we used had about 110 processor nodes. Each node contains its
own Motorola 68000 processor and local memory. Nodes are interconnected using a Butterfly
switch (logarithmic switching network). Each processor can refer to local memory and to
memory on another node (through the Butterfly switch). Remote memory references are
transparent to the programmer (after a one-time initial setup). Assuming local memory use, each
node is approximately a 0.5 MIPS machine. In the absence of contention a local memory
reference is S times as fast as a.remote memory reference. In our experiments below all of the
program, local data areas and stack are contained in local memory. The only non-local memory
references are to the distributed global string table.

4.2. Input and Output of Scanner

Our model of the Scanning Phase has a single file (random accessible) of characters as input. In
our implementation, a copy of the input file resides in the local memory of each processsing
node. We do not consider any issues of disk file input to parallel processors. We also assume
that any preprocessor operations (file inclusions, macro expansions, etc.) have been previously
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cc')mplctcd. The output from the Scanning Phase consists of:

1) Token Table

The token table is a data structure containing the sequence of tokens (lexemes) found in
the input file. Each token is represented by three quanitities: the type of token (e.g,
identifier, reserved word BEGIN, real literal, operator ’:=’, and so forth); an indication
of where the token was found in the the original file (character index to be used in
constructing error or warning messages); and a value interpreted according to the type
of the token. The value components for reserved words and operators are empty. The
value components for integer and real literals are the bit patterns corresponding to the
value of the literal. The value components for a string literal or identifier are references
(indices) to the table of strings.

2) String Table

The string table contains the strings corresponding to the user identifiers and character
string literals. The string table contains a particular string value only once. Formal
equality of two strings may be tested by comparing the indices of the strings in the
table. Note that for identifiers, formal equality does not insure symbolic equality (an
identifier in one scoping context may refer to a different quantity than the same
identifier in a different scoping context). Name/Scope resolution is to performed in a
later phase of processing.

3) Bracketing Information

A table containing the indices of tokens which bracket a set of statements. For example
the token index of a LOOP reserved word and the corresponding END reserved word
may be stored. For Procedure declarations and Module declarations the token index of
the terminating symbol ( ’;” following the procedure name following END for
procedure declarations and the ’.’ following the module name following END for
module declartions). This information is useful in partitioning the sequence of tokens
into groups for the parsing phase.

The basic technique involved in the parallel implementation of the Scanner is to logically
partition the input file into sequences of characters and give each sequence to a different
instantiation of a single process Scanning module with each instantiation running on a separate
processor. The results are then merged to form the final output of the scanner.

4.3. Partitioning For Scanning

Our partitioning strategy must be simple to avoid spending more time in partitioning than we
save by the parallel scanning of the file. In particular we cannot afford to make a pass throught
the entire file before deciding how to partition it.
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Let us assume that we have n processors available for the Scanner and wish to partition the input
file into n pieces. If the length of the file were len bytes, each piece would be approximately
len/n bytes. The overhead in merging the results of scanning very small sequences of tokens
would probably mean that there is a minimum size piece that we should be willing to scan even
if it means using fewer processors. Our estimate (based on our experiments) is that each segment
should be a minimum of of a few hundred characters long.

A lexical analysis program is essentially a finite state machine (For Modula-2 , the finite state
machine must be augmented with a counter to indicate comment nesting level). We want to start
n versions of this finite state machine, each handling a different segment of the input file. In all
but the first machine, the initial state of the finite state machine is ambiguous. While others [13]
have described techniques to hendle this ambiguity (basically by communication with the
processor on the left), we choose instead to attempt to avoid the ambiguity by making minor
changes to the partition points to eliminate (or at least reduce) the state ambiguity at the start of a
segment. First of all, we notice that if we choose our partitioning points to be white space
(spaces, tabs, end-of-lines etc) we will reduce the possible states to be: berween tokens; inside a
string literal; inside a comment (of unknown nesting level). The version of Modula-2 that we are
dealing with as implemented by Powell[16], allows us to require that string literals not cross line
boundaries unless the end-of-line is preceded by a back-slash (\). We may thus force the
partitioning points to be at end-of-lines that are not preceded by back-slashes and we reduce our
state ambiguity to be either between tokens or inside a comment. Note that the programming
language ADA [S] does not allow comments or string literals to cross line boundaries. Thus a
partition of ADA programs at line boundaries would leave an unambiguous state (berween
tokens).

Our partitioning technique for Modula-2 consists of the following. First, we divide the size of the
source file len by the number of processors available to determine the segment length. We
compute the initial starting and ending points of each segment based upon this segment length.
We send each set of starting and ending points to a different processor. Each processor (other
than the processor handling the initial portion of the input file) positions to its starting point and
then skips to the first end-of-line that is not preceded by a backslash. Each processor (including
the first) will extend its segment past the nominal ending point until the next end-of-line that is
not preceded by a backslash. We still have the ambiguity that we may have partitioned the file
cither between tokens or inside a comment. For each source segment we keep track of the
number of comment start symbols we see that do not have a corresponding comment end
symbol, and the number of comment end symbols that do not have a corresponding comment
start symbol. When tokenizing a source segment we toss any text between the comment start
symbol and either the corresponding comment end symbol or the end of the source segment. If
we encounter a comment end symbol without previously seeing a corresponding comment start
symbol, we toss away all tokens seen so far in this segment. On completion of the Scanning
processes, we can simply look at the counts of comment starts and comment end symbols and
eliminate the token tables of entire source segments if appropriate.
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For example, assume we have the following program segment. The symbol <*> and description
after the symbol <*> are meant to indicate an end-of-line being used as a segment partitioning
point.
<*> start of segment |
(* commentl: *)

yi=y+1; <*> start of segment 2
X:=x-1;

(* a very
long <*> start of segment 3
comment
extending
across - <*> start of segment 4
many lines

*)

X:=x*y;
(* anew
comment <*> start of segment 5
extending over multiple lines
*)
Segment 1 contains an entire comment which would be thrown away by the scanner working on
that segment. The tokens returned by that scanner would be just 'y’, *:=’,’y’,’+’, 1", ;" . The
number of comments started (but not terminated) and the number of comments terminated (but
not started) in the segment would be zero.

Segment 2 contains some tokens and then an unterminated comment. The tokens returned would
be: ’x’, ":=’, ’x’, ’-’, '1’, and ’;’. The number of comments started but not terminated would be
one and the number of comments terminated but not started would be zero.

Segment 3 would appear to contain the tokens ’comment’, ’extending’, and ’across’. The
number of comments started but not terminated would be zero. The number of comments
terminated but not started would be zero.

While processing segment 4 the scanner would find tokens ’'many’ and ’lines’ before
encountering the comment terminator. On encountering the comment terminator the scanner
would throw away the tokens it had found to that point. The resulting token table for segment 4
would contain just the tokens ’x’, ":=’, ’x’ , **’, ’y’, and ’;’. The scanner for segment 4 would
encounter an unterminated comment. The number of comments terminated but not started would

be one. The number of comments started but not terminated would be one.

The scanner for segment five would encounter only a terminated comment. No tokens would be
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returned. the count of comments terminated but not started would be one. The count of
comments started but not terminated would be zero.

In later processing (before we run the parser) the system would notice (from inspection of the
comment counts) that we have a comment starting in segment 2, and terminated in segment 4.
Thus all the tokens returned in segment 3 are spurious and would be eliminated. Using the
comment counts we would be able to diagnose the errors caused by improper termination of
comments.

Unfortunately, this technique is not 100% effective. A pathological case occurs when we have
single string quotes within a comment. E. G.

(* This is a comment
that causes problems
(* because of nesting and single
quotes (’) endnested *) (°)
end of comment *)

If the partition.ng point immediately followed the word single we would have a unterminated
comment count of 2 in the earlier segment. We do not know initially that we are inside a
comment when we start processing the later segment. Thus the line starting with the word
quotes would be scanned as if it were an identifier (quotes), a left parenthesis, the string constant
’) endnested *)’ and a right parenthesis. The comment terminating symbol would not have been
noticed and the count of comments terminated in this segment would be one too few. Our
current implementation does not handle this condition. The problem occurs only when a
comment contains a string literals containing either comment initiators or comment terminators
or when the comment contains unbalanced string quotes. This is fairly rare and one technique to
handle this situation would be to note if any of the string literals contained in a segment
contained the comment initiator or terminator symbols. If such a string literal were to be thrown
away because it was contained in a comment then we would rescan the offending segment.

Note we were forced to keep a count of comment starts and ends because Modula-2 allows
nested comments. In languages without comment nesting a boolean flag for indicating whether
we were processing a comment would be sufficient.

4.4. String Table Construction

Later phases of the compiler should be be able to deal with strings (either from identifiers or
character string literals) in a simple manner without need for character by character
comparisons. OQur implementation involves entering strings uniquely into a table and using the
index of the entry as a synonym for the original string. Each string will appear only once within
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the table. Thus, later stages of a compiler would determine if two strings are the same by
comparing the indices into the string table. However, we also want the individual scanners to
work as independently as possible, and the use of a single global string table is potentially a
contention point and possible bottleneck that would reduce our parallelism. Our experiments
have tested several different approaches to the string table problem.

The first technique is to have each scanner construct its own string table. On completion of all
scanners, we merge the string tables and update all the references. This has the property that the
scanning stages are truly independent and thus there is no impediment to full parallelism in the
scanning stages. Of course the merge and update must be done quickly or we may end up with a
bottleneck.

Another approach to have a distributed global string table which is managed by individual string
table processes. Thus, a scanning process would, on encountering a new string, compute a hash
code from the string and send a message to the string table process corresponding to that hash
code. It would continue processing in parallel and the string table process would update the
token for the string with the appropriate reference using shared memory technigues. A local
table is kept so that if the same string appeared twice within the segment, only one query to a
string table process would be generated.

An alternative approach is to eliminate the extra string table processes and to have the scanning
processes directly manipulate the distributed global sting table (using shared memory and
appropriate synchronization locks). We have a single global string table and a global hash table
for the string table which is distributed into the different processors memories. Thus we have a
two level hash algorithm. The first hash of a string determines which processor’s memory would
contain the string. The second hash is used to determine a hash bucket on that processor. A
linked list for each bucket is used to contain the strings that hashed to that bucket. A mutual
exclusion lock is used for each bucket to avoid problems with simultaneous writers and readers
refering to the bucket. A partial copy of the global string table (only those strings hashing to the
particular processor) is kept on the appropriate processors. A local copy of strings seen by the
individual scanner is used to avoid extra references to the global table.

The final approach considered is the same as that described in the previous paragraph except that
no local copies are kept by the individual scanners.

During the course of our prototype construction we have implemented all of the methods
described above. The fastest of all these approaches on our Butterfly Computer is the last one,
use of a distributed global hash table with no local copies. At first, this seemed counter-intuitive
as the global table would appear to be a potential bottleneck. It turns out not to be a bottleneck
because the table itself is distributed and the probability of simultaneous access to the parts of
the table on a single processor from multiple processors is relatively small. The Butterfly’s
memory structure is set up so that there is enough bandwidth to handle small numbers of
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references from remote processors to a node’s local memory without noticeable performance
degradatior on the local node. In practice the memory contention bottleneck did not appear until
a few dozen processors were simultaneously in use (our belief is that this is not so much memory
contention as switch contention). The other approaches were slower becaus: of the overhead of
message traffic, or the overhead in maintaining separate local copies of part of the String Table.

4.5. Bracketing Tables

The compilation system would like to partition the token stream corresponding to complete
syntactic entities (such as procedure declaration, statement blocks, if-then-else statement etc)
before instantiating the parallel parsers. It is convenient to have the scanning phase determine
where such entities start and terminate within the token stream. The syntactic entities are very
language dependent. In Modula-2 we have determined that the entities of interest are:

IMPLEMENTATION modules (opened by IMPLEMENTATION MODULE,
closed by sequence END ident "."
PROGRAM modules (opened by MODULE, closed by sequence
END ident ".");
DEFINITION modules (opened by DEFINITION, closed by sequence
END ident ".");
MODULE declarations (opened by MODULE closed by END ident ";");
PROCEDURE declarations (opened by PROCEDURE closed by END ident ";")
RECORD-END types (opened by RECORD closed by END)
FOR-END statements (opened by FOR closed by END)
CASE-END statements (opened by CASE closed by END)
IF-END statements; (opened by IF closed by END) ’
LOOP-END statements; (opened by LOOP closed by END) ﬂ
REPEAT-END statements; (opened by REPEAT closed by END)
WHILE-END statements; (opened by WHILE closed by END)
WITH-END statements;(opened by WITH closed by END)

We note that each of these constructs is terminated by a sequence (length <= 3) of tokens which
starts with the reserved word END. Each entity starts (with the single .exception of
IMPLEMENTATION modules) with a single well known reserved word. Our technique is to
have each of the scanning modules construct a table of all the bracketing information
encountered. The table is stored as a sequence of bracket names (such as PROCEDURE or
END) and the token index corresponding to the bracketing token.

Our current implementation assumes that the parsing stages will only want to deal with complete
units of IMPLEMENTATION modules, PROGRAM modules; DEFINITION modules;
MODULE declarations; and PROCEDURE declarations. Thus, we have the individual scanning

processes remove those pairs from their bracket tables corresponding to the statements or
RECORD types.
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5. EXPERIMENTS

We executed the scanner on various sized files and measured the performance. The times given
below do not include the initial set up time. The set up time would include copying input file into
local memories, setting up memory mapping, starting up the individual processes on the nodes;
inserting the Predeclared identifiers (such as INTEGER, REAL and so forth) into the string
table. The times do include the messages needed to tell each processor what portion of the input
it was to scan. The times do not include the finalization times (copying all the tokens to a single
area of memory, bracket table analyses and so forth).

We wish to measure the inefficiencies caused by three factors: contention; initialization
overhead; and the requirement that processors finishing early must idle until all processors
complete.

The effective number of processors is computed as:
Effective(n) = Time(1)/Time(n)

The average effective number of processors is derived by not including the idle time a processor.
This is accomplished by adding up the times to complemetion of the individual processors and
dividing by the number of processors to get an average time.

For the purposes of exposition we provide the results of running five different files through the
system with various number of processors. Because of a defect in our Modula compiler which
prevented large token tables per processornode, we were unable to scan large files on a small
number of processors (because there would be too many tokens in the token table).




Lexical Analysis on a MultiProcessor 14

5.1. Example 1 The first example is of a relatively small file. The non-uniform partitioning is very significant
(compare the average effective processors with the effective number of processors). The overhead of startup (about
4-5 milliseconds) becomes very significant above about 30 processors where the segment size gets small (less than
100 bytes).

File: ScanNumbers.mod
Size: 3170 bytes
Processors Time Effective | Avg. Time | Avg. Effective
1 614 1.0 613 1.0
2 322 19 314 20
3 227 2.7 213 29
4 165 3.7 158 39
5 131 47 126 49
I 87 71 81 7.6
10 78 19 66 9.3
15 57 10.8 46 133
20 50 123 36 17.0
25 42 14.6 29 21.1
30 39 15.7 26 23.5
35 38 16.1 23 26.6
40 36 17.1 21 29.2
45 36 17.1 20 30.7
50 32 19.2 18 M1
55 33 18.6 17 36.1
60 34 18.1 17 36.1
65 31 19.8 16 383
70 31 19.8 16 38.3
75 33 18.6 15 409
79 3] 19.8 15 409
80}
70+
60}
) 50}—
Effective a0l PR
30 o x X X
oo X
20-— ‘.i'::°°°°°°°°°°
10 “5
| S S W N e A A |
10 20 30 40 50 60 70 80
Actual Processors

The line of dots represents an ideal linear speedup; the line of crosses indicates the Average Effective Processors;
and the line of circles indicates the Effective Processors.
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5.2. Example 2 This next example also illustrates the problems of nonuniform partitioning (look at the relative
effective number of processors above 50 real processors). The problems of contention and/or small segment size
shows up above about 60 real processors (look at the avg effective processors).

File: Scanner.mod
Size: 16568 bytes
Tokens: 2202
. . . Micarnnde
Processors Time Effeciive | AvgTime | Avg. Effective
(millisecs) | Processors | (millisecs) | Processors |
3 978 29 964 3.0
4 747 39 727 40
5 615 4.7 584 49
6 500 58 486 59
8 383 1.5 365 79
10 323 8.9 297 9.7
15 217 133 201 143
20 172 16.8 149 194
25 137 21.1 122 236
30 121 238 104 277
35 105 274 88 327
40 96 300 80 36.1
45 87 33.1 7 40.6
50 83 347 64 451
55 73 39.5 59 489
60 70 41.2 54 534
65 70 412 52 55.5
70 71 40.6 49 58.9
75 69 41.8 44 65.5
80 59 489 44 65.5
85 63 458 43 67.1
90 63 45.8 42 68.7
95 59 489 40 72.1
100 so 489 39 239
100+
90
70 - ".' X x X
. ° XX
Effective ¢ L
Processors 40[ . 5% 0000 °°
301 w50°°
20 s3°
10}~ ,"
| D T I I T O O I B
10 20 30 40 50 60 70 80 90100
Actual Processors

Again the lines of dots represent a linear speedup, the circles represent effective number of processors and the
crosses represent effective processors when idle time is eliminated.
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5.3. Example 3 The next example is again of a moderate sized file. Its results are comparable to the previous

example.

File:MultiScanner.mod
Size: 16558 bytes
Tokens: 2202
L | lased -
Processors . Time Effective | Avg. Time | Avg. Effective
minism)__.&mmm__bmdlum)_" i |__Processors
3 1012 2.8 957 30
4 739 39 725 39
5 628 46 578 50
6 528 54 484 59
8 406 7.1 365 7.8
10 328 8.7 290 99
15 221 13.0 197 14.5
20 173 16.5 150 19.1
25 141 203 123 233
30 120 239 102 28.1
35 120 239 89 322
40 99 289 79 36.2
45 96 298 70 409
50 87 329 65 4.0
55 82 349 59 485
60 81 353 56 S1.1
65 77 372 53 54.0
70 75 382 50 573
75 67 42.7 47 60.9
80 66 434 45 63.6
85 63 454 41 69.8
90 67 427 41 69.8
95 69 427 40 716
100 57 S0.2 38 753
100}
90—
801
70 . xxX x
. x
Effective gg - L
Processors oL X oo %0
30| ¥000°°
10|~ 'px
B T O O I O
10 20 30 40 50 60 70 80 90100

Actual Processors
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significant as we can see by the Avg Effective Processors column.

File: Hugefile.mod
Size: 63989 bytes
Tokens: 9130
Processors M“ ftxvc Avg Time | Avg. Effective
8 1455 7.6 1380 8.0
10 1171 94 1097 10.0
15 804 13.7 735 15.0
20 597 184 551 20.0
25 494 223 444 248
30 410 269 370 29.8
35 360 30.6 319 34.5
40 319 345 279 39.5
45 282 390 249 442
50 264 417 227 48.5
55 243 453 205 53.7
60 222 49.6 191 57.6
65 208 529 178 61.9
70 198 556 164 67.1
75 189 583 153 720
80 179 61.5 145 759
85 169 65.1 136 81.0
90 162 68.0 130 84.7
95 150 734 125 88.0
100 153 2.0 121 910
100
90 |- R
80— .&-&"‘
70 - .x-".‘ o ° o
- X0
Effective gg B x"o0°
Processors 2%’
40 xo ©
30 p— s'go
20 — u‘
10+ "‘
NN
10 20 30 40 50 60 70 80 90100
Actual Processors
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5.4. Example 4 The following example is of the maximal size file handled by the current implementation
(again due to defects in the Modula compiler). The file is about 64,000 bytes long. This file is somewhat artificial in
that the file is really a concatenation of several copies of a much smaller file. Thus the string table contention is less
than would be expected because the ratio of string lookups to string insertions is higher. Again the biggest
inefficiency is due to the non-uniform partitioning. Small segment overhead, and string table contention are not as
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S.5. Example 5 To get an estimate on the problems with string table contention we reran a moderately sized
file with string table lookups and insertions disables. Thus there should have been no contention at all. The
problems of non-uniform partitioning still appear as well as the overhead for small segments.

File: MultiScanner.mod
Size: 16897 bytes
Tokens: 2256
Processors Time Effective | AvgTime | Avg. Effective
(millisec) | Pracessors | (millisec) | Processors |
5 469 4.8 449 5.0
10 248 9.0 228 9.8
15 166 13.4 153 14.6
20 128 174 115 194
25 108 20.6 94 23.7
30 92 242 79 28.2
35 90 248 69 323
40 75 29.7 60 37.2
45 68 328 54 413
50 67 333 50 44.6
55 63 354 47 474
60 59 37.8 44 50.7
65 54 413 40 55.8
70 55 40.5 39 57.2
75 51 437 37 60.3
80 50 446 34 65.6
85 49 45.5 33 67.6
90 47 474 32 69.7
95 52 429 31 71.9
100 44 507 30 243

100}—

80+
70+

Effective gg XX
Processors .
40 . X

30~ _,g'i
20} x”

10 x°
| I N S T I O |
10 20 30 40 50 60 70 80 90100

Actal Processors

Note the best effective processors value for 100 actual processors we could hope for would be 84.9 (assuming 4
milliseconds overhead) If there were 5 milliseconds overhead the best would be 81.8 effective processors.
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6. Conclusions

Overall the experiments were a success in that we demonstrated that dozens of processors (on
the order of 40 for normal sized source files) could be efficiently used to perform the lexical
analysis stage of a compiler.

Our analysis of the experiments shows several problems which tend to limit the amount of
parallelism that may be obtained for many classes of problems. The problems are contention for
shared resources; non-uniform partitioning; and partitioning overhead.

In the our example, the largest loss of parallelism is most commonly due to the non-uniform
partitioning of the input file. The loss of parallelism is caused by our requirement that each
phase of compilation be completed before the next is started. Since the variability of processing
time for different data (even though approximately the same length) is so large (seen as much as
a factor of 3) we tend to have processors totally idle for significant amounts of time. If we could
have these idle processors work on other phases of the compilation (or on other problems) this
inefficiency could be eliminated.

Contention shows up when we have large numbers of processors doing updates on the global
symbol table. Our conjecture is that this is more from switch contention than memory or string
table lock contention.

Partitioning overhead consists of the extra work needed to be done because we split up the
program. This consists of at least several components including: the actual partitioning code
executed; the code executed to merge the outputs; and the common initializations and
finalizations that must now be done on each processor where normally they would only be done
once. Partitioning overhead becomes significant when the granularity of processing is quite
small. In the scanning example, we find significant partitioning overhead when the size of
individual segments is less than a few hundred characters. This indicates that for modules of a
few thousand bytes in length, at most a few dozen processors may be efficiently exploited.
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